Stephen Bowen

PET/CT and SPECT/CT for Lung and Liver Radiation Therapy **Response Assessment of Tumor** and Normal Tissue

Stephen R. Bowen, PhD Assistant Professor Departments of Radiation Oncology and Radiology July 13, 2015

Hallmarks of Molecular Imaging for Assessing Response

Sensitivity – Efficient detection of differential molecular image signal prior to, during, after therapy

W

W

- Specificity
 - Imaging marker changes associated with specific therapeutic response
- Metabolism, proliferation, hypoxia, angiogenesis, apoptosis, perfusion
- Quantification

- Accurate and reproducible estimate of molecular image intensity

- Spatial resolution
 - Resolve spatial heterogeneity in response of imaging biomarker
- Clinical utility
- Imaging biomarkers of response associated with clinical outcome

Sample RT Response Applications

- 1. FDG PET/CT for lung cancer response assessment
- Perfusion & ventilation SPECT/CT for lung tissue response assessment
- 3. Sulfur colloid SPECT/CT for liver tissue response assessment
- 4. Radiotherapy Planning to Account for Tumor / Normal **Tissue Response Variation**

FDG PET as spatial map of local failure risk distribution

Stephen Bowen

Challenges in Regional Lung Tumor Response

- Spatial and temporal stability → test / retest
- Tumor volume regression and deformation → validated deformable image registration
- Attenuation correction artifacts at lung-tissue interfaces → motion-corrected PET & CT
- FDG PET inflammatory signal at lung-tumor boundary → optimized mid Tx and post Tx response time points

(Feng IJROBP 2009)

W

W

Multiscale Cancer Biology → From Global to Regional Response

- Tumor biology assessed at micron scale reveals high heterogeneity within PET millimeter voxels
- How does this affect response assessment?

Stephen Bowen

 Magnitude of dose escalation directly adapted based on mid Tx FDG PET (up to 80.4 Gy in 30 fractions)

Stephen Bowen

Patterns of [^{99m} Tc] Sulfur Colloid (SC) W SPECT Uptake					
	High Global Uptake	Low Global Uptake			
Homogeneous Regional Uptake	Untreated CP-A6	Untreated CP-B7			
Heterogeneous Regional Uptake	Treated CP-A5 Chemoembolization	Untreated CP-B7			

 Quantitative imaging biomarkers of liver function magnitude (liver-tospleen ratio) and volume can be tracked during and post RT to assess response

- Statistical averaging over bins of radiation dose mitigates uncertainties in image voxel alignment
- High dynamic range of doses provides more statistical power than discrete beams of homogeneous dose

Stephen Bowen

- Functional lung avoidance to reduce pneumonitis risk Mean perfused lung dose reduced below 10 Gy
- Tumor dose escalation to reduce local failure risk - PTV covered by base dose of 60 Gy
 - FDG avid regions redistributed to 90+ Gy

Summary

- W
- Imaging biomarker response assessment comes in different flavors
 - Tumor response (global / regional)
 - Normal tissue response (global / regional)
- Dose painting based on imaging biomarkers accounts for heterogeneity in response
 - Tumor: PET Boost Trial, RTOG 1106, H&N PET adaptive
 - Normal tissue: functional lung, functional liver, proliferative bone marrow avoidance
- Future opportunities
 - Integrating imaging and tissue biomarkers into response assessment of combination therapy (e.g. RT + immunotherapy)

 - Maximizing therapeutic ratio through molecular image-guided RT dose painting of tumor and normal tissue

Acknowledgments	W
Financial Support RSNA Research Scholar Grant ROI CA155454 Radiation Oncology Jim Apisarintanarax George Sandison Mati Kylite Ungren Meyer Ramesh Rengan Rob Stewart Eric Ford Mark Phillips Dosi, Jim, Rr staff (and many more) Imaging Research Lab Paul Kinahan Adam Messo Robert Miyaolad Lary Pierce Dari Myaolad Lary Pierce	Systems & Industrial Engineering Art Chaovalitwongse Shouyi Wang Shan Liu Radiology Hubert Vesselle Sitoshi Minoshima Kalpana Kanal David Zamora Missy Wanner Pam Pham (and many more) Students Hannah Thomas Josh Borgman
	Email: srbowen@uw.edu

