

Prompt gamma imaging for proton and carbon therapy

Denis DAUVERGNE, Etienne TESTA

Institut de Physique Nucléaire de Lyon, CNRS/IN2P3 Université Lyon 1

Joint ESTRO-AAPM symposium 56th Annual Meeting AAPM, Austin, July 20-24, 2014

D.Dauvergne AAPM 2014 1

Outline

Basic features:

- prompt radiation production by nuclear reactions
- prompt gamma yields
 - Measurements
 - Simulations

Online control with prompt gammas

- range verification
 - · passive collimation systems
 - Time of Flight issue
 - active collimation: Compton cameras
 - no collimation: gamma-timing
- target composition: spectral information

D.Dauvergne AAPM 2014 2

Nuclear fragmentation

D.Dauvergne AAPM 2014 4

D.Dauvergne AAPM 2014 5

Prompt gamma measurements with collimated detectors

Energy: <1 MeV to 10 MeV A small fraction is measured as discrete lines Smeets PMB 2012 Low energy gammas: larger scattered fraction Synchronization with accelerator HF or monitor: Time of Flight D.Dauvergne AAPM 2014 6

Monitoring the tissue composition (Oklahoma – Texas AM Univ. collaboration)

Comment

- No spatial information (tumour vs healthy tissues) D.Dauvergne AAPM 2014 8

Influence of TOF on PG profiles

Carbon: Lyon (Testa REB 2010), INFN (Agodi, JINST 2011)

+ astrophysics γ lines

D.Dauvergne AAPM 2014 10

Fall-off retrieval precision

Measurement with single (small) detector Real clinical detector 10 times more efficient → millimetric precision for a distal spot

Roellinghoff PMB 2014

D.Dauvergne AAPM 2014 11

Prompt gamma yields: heterogeneous targets 95 MeV/u carbon ions

High resolution profiles: influence of heterogeneities close to the Bragg peak M. Pinto et al, submitted to Med Phys

PG models benchmarking

Protons:

.

- Verburg, PMB 2012: comparison of simulation codes Geant4.9.5, MCNP6, TALYS, EMPIRE, + ENDF/B-VII library Dedicated codes more precise Variation up to factor 2
- Robert, PMB 2013: comparison Geant4/GATE and FLUKA
- Dedes, PMB 2014: Geant 4.9.4 IBA data Geant4-BIC overestimates by factor ~1.7 at 50 cm depth for 160 MeV protons in PMMA
- Smeets, PMB 2012: comparison data-MCNPX Satisfactory agreement, except background
- Biegun, PMB 2012: Comparison Geant4.9.2p02 and MCNPX

PG models benchmarking

Carbon ions:

Dedes, PMB 2014: comparison data with GEANT4.9.4, QMD model for nucleus-nucleus collisions

- Overestimation of PG yields by factor 2-3
- QMD tuning (free parameters : wave packet width and clustering size, adjusted according to fragmentation experiments)

Agreement at low energy (95 MeV/u) High energy: overestimation by factor ~ 1.5 (proton, neutron contributions)

Online control with prompt gammas

What do we want ?

Online control with prompt gammas

What do we want?

- Range verification with mm accuracy

- For single pencil beam spot (distal)
 - Protons: 10⁸ particles
 - Carbon ions: 10⁶ particles

D.Dauvergne AAPM 2014 16

Online control with prompt gammas

What do we want?

- Range verification with mm accuracy

- For single pencil beam spot (distal)
 - Protons: 10⁸ particles
 - Carbon ions: 10⁶ particles
 - For distal energy slide (statistics x10)

D.Dauvergne AAPM 2014 17

Online control with prompt gammas

What do we want ?

- Range verification with mm accuracy

- For single pencil beam spot (distal)
 - Protons: 10⁸ particles
 - Carbon ions: 10⁶ particles
- For distal energy slide (statistics x10)
- · For whole fraction (Statistics x1000) or passive delivery

Online control with prompt gammas

What do we want?

- Range verification with mm accuracy

- For single pencil beam spot (distal)
 - Protons: 10⁸ particles
 Carbon ions: 10⁶ particles
- For distal energy slide (statistics x10)
- For whole fraction (Statistics x1000) or passive delivery real time?
- 2D or 3D spatial information?
- target composition: spectral information
 - \rightarrow Compromise with statistics

D.Dauvergne AAPM 2014 19

Relatively large number of PG emitted (>10⁸ per fraction)
 Correlated to ion range
 Real time information

Poly-energetic

•

Multi-slit cameras

E> 1MeV : minimum absorption

- Escape from patient
- Difficult to collimate and detect

→ Current SPECT devices not adapted: New technologies/concepts needed

Large background (neutrons...)

D.Dauvergne AAPM 2014 20

Collimated cameras

- Lyon : Multi-slit with TOF

Collimator optimized on falloff retrieval precision (*Pinto, submitted PMB*) BGO detector. Expected precision: ~1mm at pencil beam scale (10⁸ protons)

- Delft : Multislit with TOF (project)

Collimated cameras

 MGH: TOPAS Simulation of collimated camera for passive delivery: Synchronization with range modulator wheel (M. Testa, PMB 2014): • Knife edge - Seoul (D. Kim, JKPS 2009) Measurements and simulations Single CsI détector (moving table) 40 MeV protons (1nA, 30s) with Al plates deg - Delft : Simulation (Bom, PMB 2012) Efficiency: 2.6x10⁻⁴ for E > 1.5 MeV Precision $1\sigma = 1$ mm for single spot - IBA : Operational prototype

D.Dauvergne AAPM 2014 22

et al.: Phys. Med Biol. 57 (2012) 3371. Perali et al. (2012) IEEE NSS/MIC

Courtesy J. Smeets, IBA IBA 60 Gy Total of counts acquired during treatment delivery (60 Gy) 2 Gy D.Dauvergne AAPM 2014 24

Compton cameras

- No collimation: potentially higher efficiency
- · Potentially better spatial resolution (< 1cm
- If beam position known \rightarrow simplified record

• 3D-potential imaging (several cameras)

n PSF)	- Scatter	er)
nstruction	Tracke	r
	$E_{\gamma,2}, \vec{e}_{\gamma}$ \leftarrow Absor	bei

Compto cone θ

	Group	stages	scatterer	absorber	(10 ⁻⁵)	(mm)	Proto/simu	ref
	Lyon		DSSD	LYSO	-1	6	simu	Richard 2010
Baltimore - Texas		3	Ge CdZnTe	Ge/LaBr CdZnTe	-1 ?	?	Simu proto	Peterson 2010 Polf Su-E-J-121
Seoul			DSSD	Nal	?	-12	Proto tested	Seo 2011
-	Valencia	2 - 3	LaBr	LaBr	?	7.8	Proto tested	Llosa 2013
ENVISION	Lyon		DSSD	BGO	~25	-8	Simu/proto in prog	Roellinghoff 2011, Ley 2014
	Dresden	2	sden 2	CdZnTe	LSO/BGO	?		Proto tested
	Munich		DSSD	LaBr	~1-100	~8	Proto in prog	Thirolf Su-E-J-46
S	Kyoto	Gas:	Ar+C ₂ H ₆	GSO	0.3	?	Proto tested	Kurosawa 2012
Ē	Seoul	γ cor	w.+hodo	Csl	0.6	100	Simus	Kim 2012

D.Dauvergne AAPM 2014 25

D.Dauvergne AAPM 2014 26

Compton cameras

Dresden small size prototype:

Tested at 1-14 MeV Bremsstrahlung beam (ELBE)

	Group	stages	scatterer	absorber	Efficiency (10 ⁻⁵)	Resolution (mm)	Proto/simu	ref	
	Lyon		DSSD	LYSO	-1	6	simu	Richard 2010	
Baltimore - Texas		3	Ge CdZnTe	Ge/LaBr CdZnTe	-1 ?	?	Simu proto	Peterson 2010 Polf Su-E-J-121	
Seoul			DSSD	Nal	?	-12	Proto tested	Seo 2011	
-	Valencia	2 - 3	LaBr	LaBr	?	7.8	Proto tested	Llosa 2013	
ENVISION	Lyon		DSSD	BGO	~25	-8	Simu/proto in prog	Roellinghoff 2011, Ley 2014	
	Dresden	an 2	CdZnTe	LSO/BGO	?		Proto tested	Hueso- Gonzalez 2014	
	Munich		DSSD	LaBr	~1-100	~8	Proto in prog	Thirolf Su-E-J-46	
S	Kyoto	Gas: Ar+C2H8		GSO	0.3	?	Proto tested	Kurosawa 2012	
Ĕ	Seoul	γ conv.+hodo		Csl	0.6	100	Simus	Kim 2012	
	D.Dauvergne AAPM 2014 27								

10em	Compton cameras									
	Group	stages	scatterer	absorber	Efficiency (10 ⁻⁵)	Resolution (mm)	Proto/simu	ref		
Г	Lyon		DSSD	LYSO	~1	6	simu	Richard 2010		
в	altimore - Texas	3	Ge CdZnTe	Ge/LaBr CdZnTe	-1 ?	?	Simu proto	Peterson 2010 Polf Su-E-J-121		
	Seoul		DSSD	Nal	?	-12	Proto tested	Seo 2011		
7	Valencia	2 - 3	LaBr	LaBr	?	7.8	Proto tested	Llosa 2013		
WISIO	Lyon		DSSD	BGO	~25	-8	Simu/proto in prog	Roellinghoff 2011, Ley 2014		
ĥ	Dresden	2	CdZnTe	LSO/BGO	?		Proto tested	Hueso- Gonzalez 2014		
	Munich		DSSD	LaBr	~1-100	~8	Proto in prog	Thirolf Su-E-J-46		
8	Kyoto	Gas:	Ar+C ₂ H ₈	GSO	0.3	?	Proto tested	Kurosawa 2012		
Ē	Seoul	γ cor	w.+hodo	Csl	0.6	100	Simus	Kim 2012		
	D.Dauverone AAPM 2014 28									

Compton cameras

Lyon project: TOF and beam position with hodoscope Large size camera

	· · · · · · · · · · · · · · · · · · ·								
Group stages scatterer abso		absorber	Efficiency (10 ⁻⁵)	Resolution (mm)	Proto/simu	ref			
Lyon			DSSD	LYSO	-1	6	simu	Richard 2010	
Baltimore - Texas		ore - 3 Ge as CdZn		Ge/LaBr CdZnTe	-1 ?	?	Simu proto	Peterson 2010 Polf Su-E-J-121	
Seoul			DSSD	Nal	?	~12	Proto tested	Seo 2011	
-	Valencia	2 - 3	LaBr	LaBr	?	7.8	Proto tested	Llosa 2013	
VISION	Lyon		DSSD	BGO	~25	~8	Simu/proto in prog	Roellinghoff 2011, Ley 2014	
Ш	Dresden	iden 2	CdZnTe	LSO/BGO	?		Proto tested	Hueso- Gonzalez 2014	
Munich			DSSD	LaBr	~1-100	~8	Proto in prog	Thirolf Su-E-J-46	
g	Kyoto	Gas:	Ar+C ₂ H ₆	GSO	0.3	?	Proto tested	Kurosawa 2012	
Ĕ	Seoul	γ cor	w.+hodo	Csl	0.6	100	Simus	Kim 2012	

D.Dauvergne AAPM 2014 29

Compton-camera count rate issue

Simulation: line-cone reconstruction for Lyon prototype 1 distal spot (10⁸ incident protons) incident on PMMA target, 160 MeV Pulsed beam (IBA C230)

Reduced intensity:

1 proton/bunch

Beam time-structure issue

· Counting rates

· TOF - precise timing measurements

		Synchrotron HIT		Synchrotron ProTom	Cyclotron C230 IBA	Cyclotron Varian	Synchro- cyclo S2C2 - IBA	Synchro- cyclo Mevion S250
		¹² C Protons						
Typical int	107	10 ⁹		~1010	10 ⁸ - 10 ¹⁰	~1010		
Macro- structure	Period (s)	1 - 10		0.1 - 5	-	-	10 ⁻³	0.005
Micro- structure	Bunch width (ns)	20		?	2	0.5	?	?
	Period (ns)	200		?	9.4	13.9	13	?
	lons/bunch	2	200	?	200	2 - 200	4000	?

D.Dauvergne AAPM 2014 31

Steps toward clinical workflow integration

- IBA: analytical calculation of PG response (Talk E. Sterpin TH-C-BRD-1 Thursday), simulation for lung treatment (AAPM 2013)
- P. Gueth et al (PMB 2013): Machine learning-based algorithm for patient specific PG dose monitoring
- J. Polf et al (PMB2014) : position-dependent analytical estimate of PG

D.Dauvergne AAPM 2014 32

PG vs PET (MGH)

Simulations of treatments

 Passive
 Active

 Head-neck
 ✓
 ✓

 Prostate
 ✓
 ✓

 J-spine
 ✓
 ✓

Moteabbed, PMB 2013

- nents Profile features
 - PG/PET production yields: 60-80
 - PG/PET γ transmission: \sim 5
 - PG falloff closer to the dose falloff by 5-10 mm
 ⇒ Advantage for pencil beams

Efficiency of CC/PET

- CC: $\sim 2 imes 10^{-4}$ (Roellinghoff 2011)
- \bullet in-room PET: $\sim 2 \times 10^{-2}$

Expected CC/PET statistics

- $\bullet \sim 3-4$
- \bullet CC: small Ω / PET: all the decays

Energy- and time-resolved γ-ray detection

Joost Verburg, Thomas Bortfeld, Joao Seco Department of Radiation Oncology Massachusetts General Hospital and Harvard Medical School

Proton-induced prompt γ-ray spectrum

Prompt γ -ray emissions along pencil-beam Courtesy J. Verburg, MGH

165 MeV proton beam

Proton range verification

Courtesy J. Verburg, MGH

Simultaneous determination of absolute water equivalent depth at detector position and elemental composition of irradiated tissue, using small scale prototype detector:

	Detected depth (mm)	Range error (mm)	Detected ¹⁶ O (g cm ⁻³)	Detected ¹² C (g cm ⁻³)					
Water Detector at 156.5 mm, 0.89 g cm ⁻³ oxygen									
No range error	156.3 ± 1.3	0.1 ± 1.3	0.94 ± 0.07	0.05 ± 0.07					
+ 2.3 mm shifter	158.6 ± 1.0	-2.2 ± 1.0	0.90 ± 0.07	0.02 ± 0.06					
+ 5.2 mm shifter	161.6 ± 1.0	-5.2 ± 1.0	0.88 ± 0.07	0.04 ± 0.06					
Plastic Detector at 157.1 mm, 0.21 g cm ⁻³ oxygen, 0.70 g cm ⁻³ carbon									
No range error	157.1 ± 1.4	0.0 ± 1.4	0.17 ± 0.04	0.70 ± 0.07					
+ 2.3 mm shifter	159.3 ± 1.4	-2.3 ± 1.4	0.18 ± 0.03	0.70 ± 0.07					
+ 5.2 mm shifter	162.4 ± 1.3	-5.4 ± 1.3	0.18 ± 0.04	0.69 ± 0.08					

Based on five distal pencil-beams delivering 5 x 108 protons Uncertainties $\pm 1\sigma$, n = 90

Concluding remarks

Prompt gamma = emerging technique close to clinical translation

- Physics models : still in progress
- . Collimated systems
 - compatible size with patient treatment constraints
 - Millimetric range-control at the pencil-beam scale for protons - First prototype tested in clinical conditions (knife-edge IBA)
 - Multi-collimated cameras: similar performances
- · Compton cameras: still under development (spatial resolution, 2-3D imaging).
- New concepts (with calibration issue)
 - PG timing
- PG spectroscopy
 Lower beam intensities may be required for Compton cameras or precise timing: reduction of intensity for control of the distal spots (few seconds)?
- Use of fast beam monitor for TOF with long bunch time
- Accelerator-dependent devices (count rates, TOF)

D.Dauvergne AAPM 2014 40

Special thanks

For their contribution: Joost Verburg, Julien Smeets, Guntram Pausch

Our colleagues from CAS-Phabio at IPNL and CREATIS: N. Freud, J. Krimmer, J.M. Létang, JL Ley, M. Pinto

Acknowledgements: France Hadron, Entervision

PRH PRIMES

D.Dauvergne AAPM 2014 41

Precise timing: fast monitor Scintillating fibers hodoscope

Prototype

1mm² square fibers (128 +128 fibers) Light transmission: optic fibers Photomultiplier : Hamamatsu H8500 Home-made ASICs electronic readout : discriminator + TDC at 10⁸ Hz rate capability (S. Deng 2011) Tests:

- 0.5 ns resolution
- Admissible dose > 10¹² carbon ions/cm² - Count rate < 4x10⁶ Hz per PMT: use of several PMTs