

On-line planning for the MRI-accelerator: Virtual Couch shift and On-line re-planning

Bas Raaymakers

University Medical Center

1.5 T MRI accelerator: Simultaneous irradiation and MRI

Evolution of the MRI accelerator

No impact of "beam on" for MRI

High quality 1.5 T MRI

T2 weighted MRI Rectum

The rectum, anatomy on MRI, from inside to outside:

Courtesy of Martijn Intven

Multi-slice imaging example

bSSFP sequence with radial read-out (25% sampled) 3 planes each updated at 4Hz

Plan adaptation enabled by MRI guided Radiotherapy

Improved conventional RT e.g. MRI based position verification cervix From Kerkhof et al. 2008

Virtual couch shift (VCS) and re-planning

- MRL table motion in CC only
 - On-line plan adaptation
 - Translations
 - Rotations
 - Deformations
 - Virtual couch shift, move the pre-treatment dose distribution
 - Aperture shift
 - Aperture morphing (Ahunbay et al.)
 - Re-planning

MRL treatment cycle

Point spread kernels as function of magnetic field

(a) B = 0 T (b) B = 0.2 T (c) B = 0.75 T (d) B = 1.5 T (e) B = 3 T

Courtesy of Alexander Raaijmakers

NA NA

Raaijmakers et al. Phys. Med. Biol. 50 (2005) p. 1363-76

DVH for optimized dose distribution oropharynx Comparison between B = 0 T and B = 1.5 T

GPUMCD Transport in magnetic fields

- Monte Carlo code designed to run on GPU's (Hissoiny et al 2011)
 Benchmarked against EGSnrc and DPM
 - Within 2%/2mm
 - 900, resp 200 times faster using single GTX480 (compared to 1 CPU)
- Validated as done for Geant4 by (Raaijmakers et al 2007)
- Large magnetic field induced impact
- Within 2%/2mm ("Old" GPUMCD) (Hissoiny et al PMB 2011)

IMRT for the MRL: Monaco

- GPUMCD integrated in CMS Monaco
- Clinical work flow (incl sequencing)
- Virtual Couch shift by aperture adaptation

Virtual couch shift (VCS) by Monaco

- VCS to Account for translations
 in Monaco -> aperture shift
- VCS vs. on-line re-planning
- Bone metastases
- 10 days \rightarrow 10 VCS's
- No magnetic field
- Calculation time:
 - Approx. 25 min for re-plan
 - Approx. 3 min for VCS

Courtesy Stan Hoogcarspel and Mariska Damen

SBRT for spinal bone metastasis

Original IMRT plan

Monaco VCS for shift X; 0.9 mm Y; 7.0 mm Z; 1.9 mm

Courtesy Stan Hoogcarspel and Mariska Damen

Mean percentage difference within regions /

			organs
% difference	Re- planning		Virtual couch shift
Region (mean dose original plan)	Mean	Region (mean dose original plan)	Mean
Myelum (24 Gy)	4.89 % (1.17 Gy)	Myelum (24 Gy)	2.34 % (0.56 Gy)
Right kidney (3.2 Gy)	4.30 % (0.14 Gy)	Right kidney (3.2 Gy)	2.16 % (0.07 Gy)
Target (36 Gy)	0.12 % (0.04 Gy)	Target (36 Gy)	0.61 % (0.22 Gy)

- VCS in on-line time regime!

 Start delivery right after VCS

 VCS result depends on MLC evidential
- orientationHypothesis, joint aperture
 - adaptation instead of aperture by aperture adaptation

Courtesy Stan Hoogcarspel and Mariska Damen

MRL treatment planning (MRLTP)

- Dose engine for beamlets
- GPUMCD (Hissoiny et al. 2011)
 Inverse optimisation:
- FIDO (Goldman et al. 2009) for inverse optimization
- AIDO, (based onZiegenhein et al. (2013)
- Sequencing
 - Segment-by-segment optimisation (Kontaxis et al. 2014)

Kidney IMRT plan in 15 sec. fluence (1 GTX480 per beam)

Real life example: prostate IMRT (flame trial)

Examples of "clinical grade", experimentally validated plans using Delta4 (0T)

Head and Neck

Stereotactic spinal bone

IMRT plan at MRL (at 1.5T) Validated by film dosimetry in solid water phantom

Measured IMRT Dose distribution

Courtesy Jochem Wolthaus

MRLTP for adapting IMRT to the actual anatomy: Virtual Couch Shift (VCS)

- VCS: On-line plan adaptation to move dose instead of couch
 - Maintain pre-treatment, patient specific considerations

Re-generate pre-treatment plan for new position/orientation

& rotated

VCS of phantom and cervix case

Segment by segment optimisation: towards intra-fraction plan adaptation

- Fluence optimisation
- Simple segmentation
- Pick "most efficient" segment
- Calculate dose from segment

 Monaco
- Subtract segment from ideal fluence
- Loop to fluence optimisation

Open for on-the-fly anatomical changes

Example of MRI based gated radiotherapy for kidney

1D MRI (Navigator echo) for tracking kidney Breath hold or free breathing How to handle baseline shifts?

Courtesy Mette Stam

0 10 20 0 10 20 30 40 50 0 10 20 300 10 20 0 10

Image based target tracking

MRI framework for volunteer study for on-the-fly 4D anatomy

Courtesy Cornel Zachiu

3D T1w MRI, the "proxy" data (2 mm cubic)

Coronal plane

Courtesy Cornel Zachiu

3D deformation field relative to anchor

10 Volunteers, no failures **Evaluation of kidney motion over 80 minutes**

Gating efficiency of RT for kidney tumours: free breathing, breath hold, baseline corrected breath hold

Summary and conclusion

- · Impact of magnetic field on dose can be compensated
 - Multiple beams
 - IMRT
- Virtual couch shift can be done by
 - Aperture shifting
 - Aperture morphing
 - Re-planning
- Re-planning allows accounting for daily changes
- Exploring compensation for on-the-fly anatomical changes
 - Start with intra-fraction baseline corrections

EU3

Next generation MRL arriving at UMC Utrecht

(last month)

