

Institut-Hôpital neurologique de Montréal

Montreal Neurological Institute-Hospital

Mapping brain myelin content using quantitative MRI

Christine Tardif, PhD

Assistant Professor, McGill University Associate Director, MR Unit, McConnell Brain Imaging Centre Co-Director, Quebec Bio-Imaging Network

Department of **Biomedical Engineering** Department of Neurology & Neurosurgery

Myelin is a major source of contrast in cerebral MRI

Myelin is a lipid-rich bi-layer that is wrapped around axons.

Myelin sheath

The white matter is very myelinated.

Myelination at 2 years of age Flechsig, 1920

Strong contrast between white and grey matter in MRI

T1-weighted image

MRI is used in the clinic to diagnose demyelinating disorders

Multiple sclerosis

Rovira et al., Nature Rev Neurol 2015

Leukodystrophies

Resende et al., RadioGraphics 2019

3

Why use quantitative MRI to map cerebral myelin?

- To remove methodological biases
- To improve specificity: conventional "weighted" imaging is not specific to myelin
- To quantitatively monitor disease progression and response to treatment
- To strengthen the relationship between MRI biomarkers and disability

Many myelin mapping techniques to choose from

- 1. T1 relaxometry
- 2. Magnetization transfer (MT) imaging
- 3. Inhomogeneous MT
- 4. Myelin water imaging

T1 relaxation - sensitive but not specific to myelin

T1 relaxation is more efficient for lipids than proteins

• cholesterol (Koenig, MRM 1991)

 sphingomyelin and galactocerebroside (Kucharczyk et al Radiology 1994)

Shtangel & Mezer, ISMRM 2018

T1 is also sensitive to water content, iron concentration, oxygenation, ...

T1 map [500, 2200] msec PD map [0.3, 1.3]

T1 relaxometry - an efficient and widely available technique

0.5mm isotropic MP2RAGE T1 map

Improved detection of cortical lesions in multiple sclerosis

Beck et al., AJNR 2018

2 pool model:

- observation using a clinical MRI scanner
- Apply RF pulse off resonance to selectively saturate the bound pool
- ullet

Henkelman et al., NMR in Biomed 2001 Sled, NeuroImage 2018

• The MT ratio (MTR) is a semi-quantitative technique because it depends on the acquisition parameters chosen.

$$MTR = \frac{S_0 - S_{MT}}{S_0}$$

• MT saturation (MTsat): corrected for B1 non-uniformity and counteracting T1 effects.

(Helms et al. MRM 2008)

MTR

MTsat

MT imaging is widely used to study MS and other myelin-related disorders

Stikov, Campbell et al. NeuroImage 2015

Rudko et al. NeuroImage: Clinical 2016

Cortical MS pathology

Cortical pathology in schizophrenia

Wei et al. Schizophrenia Research 2018

T1 and MT are not specific to myelin

- Many macromolecules contribute to T1 and MT -
- T1 and MTR are a function of tissue water content
- T1 is also sensitive to other tissue features, such as iron content

Vavasour et al. JMRI 2011

11

inhomogeneous MT - the dipolar reservoir

inhomogeneous MT - the dipolar reservoir

Creates dipolar order

Morrison, Stanisz & Henkelman, J Magn Reson, B 1995 Morrison & Henkelman, MRM 1995 Provotorov, Sov. Phys. JETP 1962 Duhamel, ISMRM 2019

inhomogeneous MT - the dipolar reservoir

Morrison, Stanisz & Henkelman, J Magn Reson, B 1995 Morrison & Henkelman, MRM 1995 Provotorov, Sov. Phys. JETP 1962 Duhamel, ISMRM 2019

14

ihMTR and ihMTsat

Must acquire a minimum of 3 images to calculate ihMTR:

- single frequency saturation
- dual frequency saturation
- no saturation

 $ihMT = MT^{+\Delta f} + MT^{-\Delta f} + MT^{+\Delta f, -\Delta f} + MT^{-\Delta f, +\Delta f}$ $ihMTR = \frac{ihMT}{S_0}$

Similarly to MTsat, we can calculate ihMTsat to remove confounding T1 effects

Rowley et al. ISMRM 2020

ihMT - more specific to lipid-rich lamellar structures

Varma et al. MRM 2015

Ercan et al. MRM 2018

Inhomogeneous MT in multiple sclerosis (MS)

Relapsing remitting (RR) MS patients

Obberghen et al. AJNR 2017

Myelin water imaging - looking at different microstructural compartments

Total signal in a voxel is the sum over the different compartments:

$$y_i = \sum_{j=1}^M s_j e^{-t_i/T_{2,j}}, \quad i=1,2,\ldots,N.$$

Myelin water imaging - a more specific biomarker

Validation in postmortem MS tissue using histology

Laule et al, NeuroImage 2008

Limitations:

- low efficiency -
- custom sequences -
- complex fitting -

Alonso-Ortiz et al. MRM 2015 MacKay & Laule, Brain Plasticity 2016 Lee et al., JMRI 2020

19

MWF is associated with social disabilities in autism spectrum disorder (ASD)

Whole brain MWF measured using McDESPOT

Deoni et al., Psychological Med 2015

Summary

- There are many quantitative myelin mapping techniques available \bullet
- They are widely used to study healthy myelinatination as well as de- and dys-myelinating disorders ${}^{\bullet}$
- Myelin water imaging and inhomogeneous MT are more specific biomarkers ${\bullet}$

Future directions:

- Improve efficiency of MWI and ihMT \bullet
- Multi-modal imaging to gain information about myelin ultrastructure (eg. g-ratio)
- Tract-specific myelin metrics \bullet

Acknowledgements

Daniel Andrews Sarah McGillivray Christopher Rowley Sajjad Feizollah Mark Nelson Tim Wu Ilana Leppert

Ilana Leppert Marius Tuznik Mike Ferreira Marcus Couch Jennifer Campbell Prof. David Rudko Prof. Rick Hoge

McGill

Awarding NARSAD Grants

