Innovations in CT-Guided Adaptive Radiation Therapy Geoff Hugo, Ph.D. Washington University Radiation Oncology gdhugo@wustl.edu @gdhugo 💟 #### **Disclosures** - Employee of Washington University - · Research Grants: NIH, Varian Medical Systems ## Enabling Technologies for Adaptive RT | ART Accuracy and Clinical Efficiency | | |--|--| | High quality ART in the clinic requires accurate and efficient means to: - Assess change / decision making (when to adapt) - Transfer structures (targets and organs at risk contours) - Transfer dose (for accurate assessment of delivered dose) - Regenerate the treatment plan | ART Accuracy and Clinical Efficiency | | | High quality ART in the clinic requires accurate and efficient means to: - Assess change / decision making (when to adapt) - Transfer structures (targets and organs at risk contours) - Transfer dose (for accurate assessment of delivered dose) - Regenerate the treatment plan | | | Deformable image registration is a key component of these basic elements of ART. | | | ANI. | | | | | | | | | | | | | | | | | | Tanian | | | Topics | | | Recent work on improved deformable image registration | | | Do we need deformable image registration for adaptive RT? | | | Image quality improvements in CT and cone beam CT | | | | | | | | ## **Conventional Deformation** #### **Conventional Deformation** ## **Conventional Deformation** Topology Preserving: Images can be stretched/squeezed to match without adding or removing image content ## **Topology Preserving Deformation** - · Articulation / Pose Change - Breathing Motion # Challenges – Topological Change # Challenges - Topological Change Topology Change: Images can't be stretched/squeezed to match without adding or removing image content ## Challenges - Topological Change Topology Change: Images can't be stretched/squeezed to match without adding or removing image content # Topology Change - Examples ## Atelectasis / large tissue change - Atelectasis (partial collapse) Pleural effusion (fluid) - Large volume changes in atelectasis (~150cc) during RT - Associated with large tumor shifts (> 5mm in 83% of pts) Collapsed Lung Guy Med Phys 2016, Tennyson Adv RO 2016 ## Atelectasis / large tissue change Dose recalculated on mid-treatment image Aligned to both bone and carina Compared to planned dose Dose changes can be significant • Highlights need for ART/DIR | | | Bone aligned | | | Carina aligned | | | | | | |-------------|------------------|--------------|------|-------|----------------|-------|------|-------|-------|------| | Structure | Metric | Units | Mean | Stdev | Min | Max | Mean | Stdev | Min | Max | | Spinal cord | D_{max} | Gy | 0.67 | 2.99 | -2.78 | 10.93 | 0.14 | 1.80 | -2.94 | 4.29 | | Esophagus | D_{mean} | Gy | 0.99 | 2.69 | -3.72 | 7.92 | 0.77 | 2.95 | -4.56 | 7.07 | | Lungs | D_{nem} | Gy | 0.50 | 2.05 | -2.89 | 5.69 | 0.06 | 1.71 | -3.35 | 4.56 | Guy Med Phys 2016, Tennyson Adv RO 2016 ## Thoracic Registration - Strategies - · Ignore regions with appearance change, identify 'consistent anatomy' between images - · Identify consistent anatomy that can be segmented (vessels, airways, lobes), register these regions - Model other changes (tumor, atelectasis, pleural effusion, etc.) ## Vessel Registration - · Filters applied to enhance tubular structures - Produces a 'vesselness measure' image, [0, 1] - 'Vesselness measure image' registered in parallel with original images Cao et al., WBIR 2010 | _ | |---| | n | # Vessel Registration Vessels segmented after enhancement No 'one to one' match (collapsed lung) Conventional registration methods may get stuck in 'local minima'. Need an algorithm that can handle global matching ## Vessel Registration - No one-to-one match - Collapsed lung - 'Varifolds' used for fuzzy matching Pan CVPR 2016 ## Registering Atelectatic Lobes - Hypothesis: Atelectasis is mostly collapsed lung, so re-inflation should approximately preserve the mass of the affected lobe. mass-preserving cost function used in atelectatic and normal lung. ## Registering Atelectatic Lobes - Hypothesis: Atelectasis is mostly collapsed lung, so re-inflation should approximately preserve the mass of the affected lobe. - mass-preserving cost function used in atelectatic and normal lung. If mass is preserved, tissue should change intensity when expanded / contracted during registration. ## Lung DIR Algorithm Multi-resolution B-spline framework (elastix) Mass-preserving metric within healthy lung ± Intensity-based similarity metric within atelectasis Co-registration of lobe label images ± Co-registration of vesselness measure images ## Lung DIR Algorithm | Results vs. | Resolution | Type | |-------------|------------|-------| | | | .,,,, | | | No Change | Partial | Full | |--------------|---|---|---| | Unregistered | 21 | EZ | 44 | | Registered | 21 | EA | 11 | | | an Err: 2.50 (1.16)
ax Err:16.18 (10.86)
DSC: 0.91 (0.08) | 2.80 (0.70)
25.77 (17.22)
0.90 (0.08) | 2.04 (0.13)
23.27(9.60) (mr
0.89 (0.04) | | | | | | ## Registration in Cervical Ca RT • Combined external beam RT and intracavitary BT => large uncertainty in cumulative dose # Registration in Cervical Ca RT - Combined external beam RT and intracavitary BT => large uncertainty in cumulative dose - DIR challenges: - Images with / without applicator => topology issues - Large motion of anatomy in abdomen => complex / large deformations - Mixed modality S. Oh AAPM 2016 | Registration in Cervical Ca RT | | |--|--| | Penn approach: | | | - EBRT CT to BT CT, with/without EBRT boost | | | Pre-processing to equalize contrast and enhance organ boundaries (bladder,
rectum, packing) | | | - Contoured applicator | | | - Commercial DIR then applied | | | Compared 'parameter adding' of D2cc to DIR-accumulated values between
EBRT and BT for risk organs (bladder / rectum) | | | - Rectum / bladder D2cc varied by 5% between DIR and parameter adding | | | | | | | | | B-K Teo, Radioth Oncol 115, 2015 | Registration in Cervical Ca RT | | | Rotterdam approach: | | | – EBRT MR to BT MR | | | Automated feature extraction near contoured organs (bladder, cervix/uterus,
rectum) used for feature-based DIR | | | 'Feature filter' similar to vesselness measure | | | Feature DIR registers points in a 'fuzzy matching' method where point
correspondence is unknown | | | - Organ, feature, and background transforms combined | | | | | | | | | E. Vasquez Ororio, Med Phys 24, 2015 | Designation in Complete Co DT | | | Registration in Cervical Ca RT | | | Rotterdam approach: | | | Landmark-based accuracy assessment (mean error): | | | - Rigid: BT MRI + contours Rigid AST SW-VF | | | - 22.4 mm near organs- 4.3 mm away from organs | | | and the state of t | | | - DIR: | | | - 3.5 mm near organs | | E. Vasquez Ororio, Med Phys 24, 2015 - 3.4 mm away from organs | What about the target? | | |--|--| Tumor Regression | | | | | | and the state of t | | | 2 m 1 | | | 20 1 2 3 4 5 6 7 Yearner was | | | Week 1 Week 7 | | | Glide-Hurst, UROBP 2010 | | | | | | | | | | | | | | | Turner Degraceien | | | Tumor Regression | | | How to accumulate dose to regressing tumor? | | | Where is tissue lost (how to appropriately register)? | | | Requires contrast / markers within tumor to study | | ## **Tumor Regression** prmu_i Analysis of GTV reduction during radiotherapy for oropharyngeal cancer: Implications for adaptive radiotherapy O Hamming-Vrieze, SR van Kranen.... Radiotherapy and ..., 2017 - Elsevier ## **Tumor Regression** PTIMI, Analysis of GTV reduction during radiotherapy for oropharyngeal cancer: Implications for adaptive radiotherapy O Hamming-Vrieza, SR van Kranen.... Padiotherapy and ..., 2017 - Elsevier | nt (cm) Week 3 | | | Week 6 | | | | |----------------|------|----------------------------------|-----------------------------------|------|---------------------|--| | | 5 | $c_{\mathcal{O}_{\mathrm{max}}}$ | $<\!\!\Delta\phi\!\!>_{\rm rest}$ | 5 | $<\!\!p\!\!>_{mat}$ | $<\! \Delta_1 b^{\alpha}_{\alpha mat}$ | | | -1.0 | -0.9 | -0.6 | -1.9 | -1.3 | -0.9 | | | 0.1 | 0.2 | 1.1 | 0.0 | 0.4 | 1.9 | | | -0.3 | -0.2 | 0.1 | -0.5 | -0.2 | 0.3 | | visition | 0.2 | 0.2 | 0.3 | 0.4 | 0.4 | 0.5 | # **Tumor Regression** Planning Image Week 5, RT Hugo et al., UROBP 2011 | Cumulative dose in adaptive RT | | |---|--| ART – Key Questions | | | | | | Image registration – role and need | | | Do we need to know the delivered, cumulative dose? | Adapting the Plan | | | | | | | | | | | | | | | Original CT, Original Plan Mid-tx CT, Original Plan | | | | | | Adapting | the Plan | | |--|--|--| | | | | | A 6 | | | | | | | | | | | | 2016
2016
2016
2016
2016
2016 | 2021 00 2021 | | | Original CT, Original Plan | Mid-tx CT, Original Plan | Adapting | the Plan | | | . • | | | | 100 | 1000 | | | | | | | | | | | 100 cm
2016
2016
2016
2016
2016
2016 | TOLICON | | | Original CT, Original Plan | Mid-tx CT, Adapted Plan | Adapting | the Plan | | | _ | | | | V CONTRACTOR OF THE PARTY TH | | | Original CT, Original Plan Mid-tx CT, Adapted Plan | Cumulative Dose | | |--|--| | | | | | | | | | | | | | Original CT, Original Plan Mid-tx CT, Original Plan | | | onginaron, onginarian | | | | | | | | | | | | | | | | | | Cumulative Dose | | | Map | | | | | | | | | | | | Original CT, delivered Mid-tx CT, Original Plan | | | Original CT, delivered Mid-tx CT, Original Plan daily Dose | | | | | | | | | | | | | | | | | | Cumulative Dose | | | | | | Sum Sum | | | Juin | | Original CT, delivered daily Dose Mid-tx CT, Adapted Plan #### **Dose Accumulation** - Use the cumulative, delivered dose to - Assess coverage and normal tissue dose (decision support) - Avoid hot/cold spots in adaptation - Is there a need for this? #### **Cumulative Dose** - Parameter adding vs. cumulative dose - 18 patients, single adaptation | | Mean +/- SD
difference / % | Range,
difference / % | Number > 5%
difference | |-----------------|-------------------------------|--------------------------|---------------------------| | Mean Lung Dose | 5% +/- 5% | 1% - 16% | 4 / 18 | | Mean Heart Dose | 4% +/- 3% | 0% - 12% | 6 / 18 | #### **Cumulative Dose** - Parameter adding vs. cumulative dose - 18 patients, single adaptation | | Mean +/- SD
difference / % | Range,
difference / % | Number > 5%
difference | |-----------------|-------------------------------|--------------------------|---------------------------| | Mean Lung Dose | 5% +/- 5% | 1% - 16% | 4 / 18 | | Mean Heart Dose | 4% +/- 3% | 0% - 12% | 6 / 18 | · Similar results in cervical ca (other groups) | Cumulative Dose | | |--|--| | Requires clinical trial of 'plan of day' adaptive vs.
cumulative dose adaptive to answer the question | CT image quality improvements | Eron broothing CPCT shallonger | | | Free-breathing CBCT - challenges | | | | | | | | | | | | Motion Blurring Streaking (View Aliasing) | | # Solution: Motion Compensation ## Solution: Motion Compensation ## Solution: Motion Compensation # Solution: Motion Compensation #### **Results: Clinical Dataset** #### **Results: Clinical Dataset** # WashU Halcyon 2.0 - 2.0 features - Distal/proximal leaf shaping - Dynamic beam flattening - Kilovoltage cone beam CT imaging # Abdomen - Halcyon vs TrueBeam ## Summary - Image registration developed to manage large, geometric changes in the thorax. - · Next steps: Test whether cumulative dose is needed - Image quality is improving for online adaptive radiation therapy | | Collaborators | | |---------------------------------|-------------------------------------|--| | Wash U Rad Onc:
Jeff Bradley | Wash U Students: | | | Bin Cai | Shaikat Ghalib | | | James Kavanaugh | | | | Hyun Kim | VCU Students: | | | Eric Laugeman | | | | Parag Parikh Nicky Mahon | | | | Mike Roach
Cliff Robinson | Matthew Riblett | | | Cili Robinson | | | | VCU Rad Onc: | University of Iowa Engineering: | | | Elisabeth Weiss | Gary Christensen
Amanda Pan | | | Nuzhat Jan | rhat Jan
Kunlin Cao
ah Kalman | | | Noah Kalman | | | | Nate Tennyson | | | | This project supported by NIH/N | CI research grant R01CA166119 | |