

Outline

- Basic principle of dual-energy CT
- Major components of dual-energy CT protocols
- Major considerations in dual-energy CT protocols
 - Radiation dose
 - Scan techniques and spectrum selection
 - Material-generic applications (virtual monochromatic)
 - Material-specific applications (Virtual unenhanced, iodine, stone, etc.)
- Summary

MAYO CLINIC

Basic principle of dual-energy CT

- In diagnostic energy range, linear attenuation coefficient of a material can be decomposed into (Alvarez and Macovski, 1976):
- $\mu(r, E) = \boxed{a_1(r) \cdot \frac{1}{E^3}} + \boxed{a_2(r) \cdot f_{KN}(E)}$ Photon-electric Compton
 effect effect
- Equivalent to two basis-material decomposition (Lehman et al, 1981):
- To solve the density maps of the two basis materials, measurements from at least two-energy spectra are required:

Strength and weakness of different Approaches

Technology	Stringts	Weaknesses	
Temporally sequential scanning of the entire scan volume	Can be performed on any CT scanner (no special hardware required).	Any polisient motion occurring between the two scans may cause severe degradation of the resultant images and motiental composition information.	
Temporally sequential scanning of a single axial rotation	Care to preferrined on uny CT scarere ho special bandware request. Reduced intercard only leftween the low- and high-energy images.	Bot import involves otherwise with particle-same meconfractions, which are note sampled to beness in C matcher, this right days the material composition accuracy. The sampleking is noticen management and the law- and spla-sample signal acid matcher may that the original management and acid matcher and the effort the approximation acid matcher or for an any solution acid matcher acid matcher or for accuracy to adopt the interface of the acid acid matcher acid matcher acid matcher the interace in that acid matcher acid matcher acid acid matcher acid matcher acid matcher acid acid matcher acid matcher acid matcher acid acid matcher acid matcher acid matcher acid	
Rapid switching of the x-ray fabe potential	Near-similarises data scapation of the tow- and high-energy data set. Manes Sual-energy matrical-decomposition algorithms to be implemented by using either projection data or reconstructed images. Reduced beam-hardwing utilized in calculated "wirtual mercenverset", images.	Registen specialized hardware. Relatively high overlap of the energy spectra.	
Multinyer debotor	Simultaneous data acquisition of the kw- and high-energy data set. All image data are acquired in a manner that supports material-secolic imagina.	Requires specialized hardware. Relativity high overlap of the energy spectra. Noise level may differ between low- and high-energy images.	
Dual x ray sources	Table current and table filteration can be optimized for each table potential indipendently. Relatively jour objects of spectral overtag, which improves contrast to noise million in material-specific images. Journ - hardmap corrections are applied prior to image reconstruction, allowing material-specific images to be created in the immed density.	Requires specialized hardware. A tor phose shift between two- and high-energy data. Strutubrocost are of both - any sources allows scattered rediation whose origing energy plotton cames from one table to dedected by the distribute of the other table, requiring specialized scatter correction.	
Photon-counting detectors	Uses energy-specific measurements and energy thresholds to reject electronic noise. Facilitation new imaging approaches, such as k-edge subtraction.	Requires specialized hardware, which is not articipated to be commercially available for some time. If at all,	McCollough et a

Major components of dual-energy CT protocols

- Scanning and reconstruction (scanner platform dependent)
 - Radiation dose
 - Spectra and technique selection
 - Material decomposition
- Post-processing (clinical application dependent)
 - Material-generic (virtual monochromatic)
 - Material-specific (Virtual unenhanced, iodine, stone, gout, etc.)

MAYO CLINIC

Major Considerations in Dual-energy CT Protocols

- Radiation dose
- Scan techniques and spectrum selection
- Material-generic applications (virtual monochromatic)
- Material-specific applications (Virtual non-contrast, iodine, stone, etc.)

Spectrum and technique selection – GE GSI GSI preset list: GSI assist selects a technique to match CTDIvol in a non-GSI acquisition for a target non-GSI noise index

GGI Preset	***	seov	Rotation Time (a)	Beam collimation Immi	стоц-	GSI Preset	A/66	seov	Rotation Time (s)	Beam collimation timmi	стрі,
	Body	targe body	0.5	60	17.30	*37	Footy	Medium Rocky	0.8	60	10.61
1	Body	redun tody	0.5	89	31.81	150	Body	Marken Book	0.8	20	11.67
3	bety	Hedium Body	0.5	+0	26.16	*20	Lined	- Handra - Booky			21.02
	bety	Large Body	0.9		28.94		Preud	1600			24.90
	toy .	Carlot Lock	10		31.85		Locy	Large soay	0.6		11.82
	Loty .	Lass late	1.0		11.00		BODy	Hedium Body	0.6	40	12.56
	Page 1	the process	1.0	20	20.40	542	Body	Hedium Body	3.0	20	13.76
	and a	- month -	1.0	10	177.81	743	Heod	Heod	0.6	20	29.17
12	And a	Lana Bach	08	47	N. 77	766	Doth	Large Body	0.7	60	10.37
11	Fody .	medium tooly	0.8	92	25.87	145	Body	Hedium Body	0.7	40	10.94
12	toly	Large Body	0.8	20	26.99	106	Fody	Hedum Rody	0.7	20	11.81
15	boly	Hedrun body	0.8	30	25.35	147	here	movi	07	20	25.58
34	Head	read	0.8	30	41.22		- Fred	Lange Backs		40	4.72
	tety	Umpe Body	0.8	40	21.20	- 100	and a	sarge away			8/5
16	Body	Hedium Body	0.8	+0	22.06	~~o	Body	Hedum Body	0.7	40	9.37
	koty	Large Body	05	20	23.08	*50	Body	Hedium Body	0.7	20	10.03
18	koty	Hedun Kody	0.6	20	24.09	*51	Body	Large Body	0.5	40	9.56
19	Head	Head	0.6	20	\$2.36	-52	Body	Hedium Body	0.5	40	10.34
50	Head	Head	0.8	50	42.80	*53	Body	Hedium Body	0.5	20	11.29
53	Mead	Seal Head	0.5	20	37.81	754	Forty	Loope Body	0.6	60	8.82
*11	Body	Large Body	6.7	#3	34.36	100	- Erete	Marines Bash		10	4.11
*25	bety	Hedium Body	67	+0	25.37		Loop	Percent book			1.70
124	Bety	Large Body	07	- 20	25.65	-10	eog	Peours ecoy	0.6	20	10.18
	eety .	- Hereit Bock	07		0.49	57	cardiac	Lorge Cardiac	0.35	60	8.48
-10	- Anda	realized			20.07	58	Cordioc	Medium Condiac	0.35	40	871
47	e-dy	international feature			34.27	59	Contine	SmdTCardiac	0.35	40	7.A0
11	Roly.	Period Rock	0.8	20	26.31	60	Cordioc	Lorge Cardiac	0.35	40	14.35
30	Head	Head	0.8	22	\$5.22	61	Cordioc	Nedum Cardiac	0.35	40	16.93
25	8054	Large Body	0.6	92	12.52	62	Cordioc	Small Cardiac	0.35	60	12.68
192	Bady	Hedura Back	0.8	+0	13.67	61	Castion	Lorge Cardiac	0.35	40	17.16
*33	Body	Large Body	0.8	30	13.49		1.000	to produce	0.95		11.00
134	tety	Hedum Body	0.8	20	13.95		Coroloc	Headin caraac	0.35	- 40	17.86
35	boty	Helium Body	0.5	20	29.60	65	Lerdice	smerCardiac	0.35	-40	15.27
*36	boty	Large Body	0.8	40	9.83	166	Head	Small Head	0.8	20	21.99

MAYO CLINIC Two Categories of Dual-energy CT Applications Material-generic imaging Material-specific imaging - Basis material decomposition - Virtual monochromatic image - PE-Compton decomposition

Reduce artifacts, improve quantitative accuracy, Improve contrast and CNR

- Expand CT clinical applications Material quantification (e.g.,
- iodine, bone) Material classification (e.g., bone/iodine, uric acid/non-uric

acid)

Generated as material basis pair (e.g., water/iodine; uric acid/calcium)

GE Revolution CT GSI Xtream white paper, 2017

Virtual monochromatic imaging

- Reduce beam-hardening artifacts and improve quantitative accuracy
- Low keV to improve contrast or CNR
- Medium keV to minimize noise
- High keV to reduce metal artifacts

MAYO CLINIC Improved Iodine Enhancement at low keV

50 keV From Philips iQon CT, Rassouli et al, 2017

TO MAYO CLINIC

Optimal	energy f	for virtual	monochro	omatic	Ima

- Artifacts and noise might be problematic at too low monochromatic energies
 - Optimal energy for virtual monochromatic images
 - For contrast and contrast-noise-ratio enhancement: ~50 keV
 - For minimum noise and soft tissue contrast: 65-75 keV

ages

References

- Alvarez RE, Macovski A. Energy-selective Reconstructions in X-ray Computed Tomography. Phys Med Biol 1976; 21:733-744
- 2. McCollough CH, Leng S, Yu L, Fletcher JG. Dual- and Multi-Energy CT: Principles, Technical Approaches, and Clinical Applications. Radiology 2015; 276:637-653
- ology: Springer, 2015
- Rassouli N, Etesami M, Dhanantwari A, Rajiah P. Detector-based spectral CT with a novel dual-layer technology principles and applications. Insights Imaging 2017; 8:589-598
- Yu LF, Leng S, McCollough CH. Dual-Energy CT-Based Monochromatic Imaging. Am 2012; 199:59-515 al of Roenta
- Jacobsen MC, Schellingerhout D, Wood CA, et al. Intermanufacturer Comparison of Dual-Energy CT Iodine Quantification and Monochromatic Attenuation: A Phantom Study. *Radiology* 2018; 287:224-234
- 7. Zhang D, Li XH, Liu B. Objective characterization of GE Discovery CT750 HD scanner: Gemstone spectral imaging mode. Medical physics 2011; 38:1178-1188
- Kaza RK, Raff EA, Davenport MS, Khalatbari S. Variability of CT Attenuation Measurements in Virtual Unenhanced Images Generated Using Multimaterial Decomposition from Fast Kilovoltage-switching Dual-energy CT. Acad Radiol 2017; 24:365-372
- Michalak G, Grimes J, Fletcher J, et al. Selection of optimal tube potential settings for dual-energy CT virtual mono energetic imaging of iodine in the abdomen. Abdom Radiol 2017; 42:2289-2296

MAYO CLINIC

Summary

- Major components of DE protocols
- Scanner platform-dependent considerations
 - Scanning parameter optimization (kV, dose, etc)
 - Material decomposition (methods, material types, etc)
- Clinical application-dependent considerations
 - Material-generic (virtual monochromatic) • Optimal keV depends on applications
 - Material-specific (VNC, iodine, stone, etc)
 - VNC dose and image quality
 - · lodine quantification accuracy
 - Stone characterization

MAYO CLINI

Acknowledgements

- Cynthia McCollough, PhD, Mayo Clinic
- JG Fletcher, MD, Mayo Clinic Katrina Glazebrook, MD, Mayo Clinic
- Shuai Leng, PhD, Mayo Clinic
- ٠
- Andrea Ferrero, PhD, Mayo Clinic
- Zhoubo Li, PhD, GE Healthcare
- Jiang Hsieh, PhD, GE Healthcare
- Xinhui Duan, PhD, UTSW at Dallas
- Thomas Flohr, PhD, Siemens Healthineers
- Chris Favazza, PhD, Mayo Clinic Amar Dhanantwari, PhD, Philips Healthcare
 - Katrina Read, Philips Healthcare