Advances in Image-guided Neuro-interventions: Clinical Pull and Technology Push in 2D, 3D, and 4D imaging methods

Guang-Hong Chen, PhD

Professor of Medical Physics and Radiology

Autometrisof Aedical Physics & Radiology W

Financial Disclosure

- Grant supports from National Institutes of Health (NIH) through R01CA169331, R0120501, and U01EB
- Grant support from Department of Defense (DOD) Research Breakthrough Award W81XWH-16-1-0031;

W

W

- Research grant support from Siemens AX, Hoffman Estate, Illinois, USA;
- Research grant support from GE Healthcare, Waukesha, Wisconsin, USA;
- Patent royalties received from GE Healthcare.

Acknowledgement

UW-Madison Stroke Imaging Research Team

PIs: Guang-Hong Chen, Charlie Strother, and Beverly Aagaard-Kienitz Members (Basic Science):

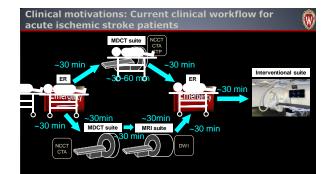
Dr. Ke Li, Dr. Yijing Wu, Yinsheng Li, John Garrett, Kai Niu

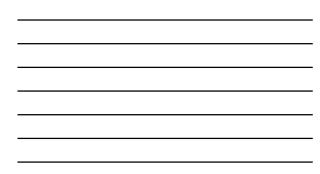
Members (Clinical):

Howard Rowley, Pat Turski, David Niemann, Azam Ahmed

Siemens Support: Sebastian Schafer, Kevin Royalty, Yu Zheng, Klaus Klingenbeck International Clinical Collaborators: Dr. Pengfei Yang at Chang Hai Hospital, Shanghai, Drs. Doerfler and Struffert at the University of Erlangen-Nuremberg

Ŵ


- Technical challenges and technical solution, SMART-RECON, to address the challenges
- SMART-3D: generate 3D DSA and soft tissue images with reduced motion artifacts, beam hardening artifacts and noise level from a single sweep cone-beam CT (CBCT) acquisition
- SMART-4D: generate time-resolved CBCT angiography and whole brain CBCT perfusion maps
- SMART-2D in anglo suite: factor of 20 reduction of radiation dose in 2D DSA
- Summary

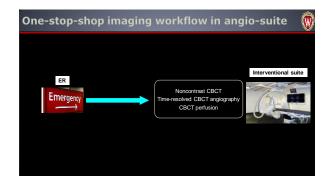

Outline

W

- Technical challenges and technical solution, SMART-RECON, to address the challenges
- SMART-3D: generate 3D DSA and soft tissue images with reduced motion artifacts, beam hardening artifacts and noise level from a single sweep cone-beam CT (CBCT) acquisition
- SMART-4D: generate time-resolved CBCT angiography and whole brain CBCT perfusion maps
- SMART-2D in angio suite: factor of 20 reduction of radiation dose in 2D DSA

Summary

Procedure characteristic in published clinical trials

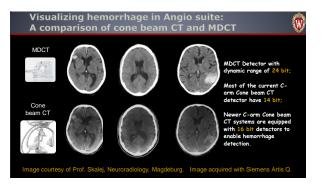

0

Procedure characteristics in EXTEND-IA Trial

- ONSET TO GROIN PUNCTURE
- 210 (166-251)
- CT TO GROIN PUNCTURE
 93 (71-138)

 GROIN PUNCTURE TO TICI 2B/3 OR COMPLETION
 43 (24-53)
 ONSET TO TICI 2B/3 OR COMPLETION 248 (204-277)

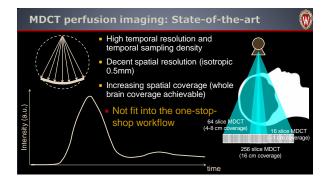
Much shorter time from imaging to groin puncture is desired for better treatment outcome for eligible subjects!

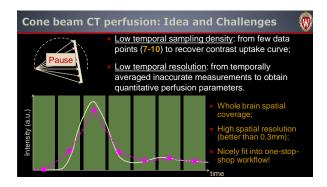

Imaging needed in One-Stop-Shop workflow

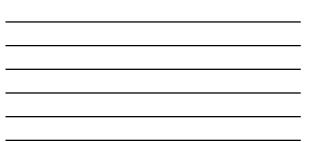
- Non-contrast whole brain cone beam CT image to detect hemorrhage;
- Time-resolved CBCT angiography to locate occlusion site and collaterals;
- Whole brain cone-beam CT Perfusion to detect penumbra;

Plus:

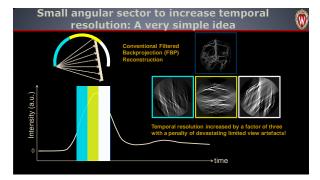
- Reduced motion artifacts;
- Reduced radiation dose;
- Reduced beam hardening artifacts

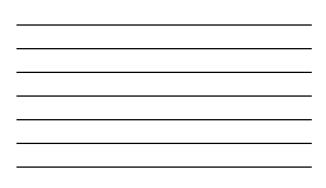

ded in One-Stop-Shop workflow Imaging /

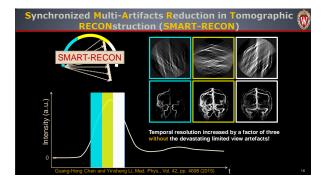

- Non-contrast whole brain cone beam CT image to detect
- and perform collateral analysis;
- Whole brain cone-beam CT Perfusion to detect penumbra and infarction core;


Plus:

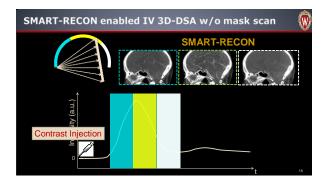
- Reduced motion artifacts;
- Reduced radiation dose; Reduced beam hardening artifacts;

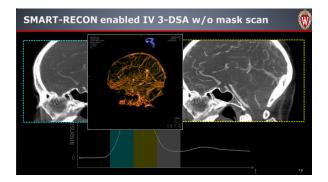


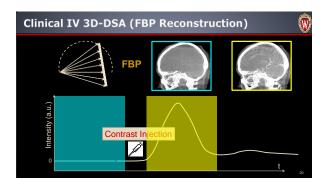



Technical challenge: brief summary

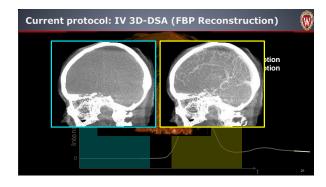
gh Temporal solution and high mporal sampling

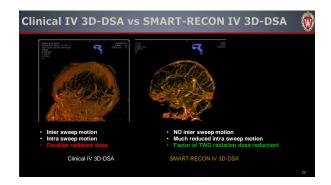


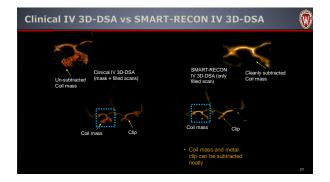

0

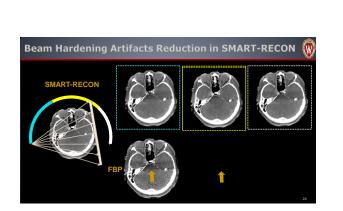

-

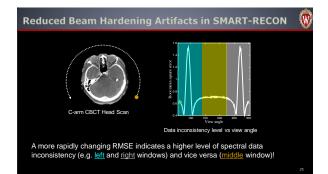
- Technical challenges and technical solution, SMART RECON, to address the challenges
- SMART-3D: generate 3D DSA and soft tissue images with reduced motion artifacts, beam hardening artifacts and noise level from a single sweep cone-beam CT (CBCT) acquisition
- SMART-4D: generate time-resolved CBCT angiography and whole brain CBCT perfusion maps
- SMART-2D in angio suite: factor of 20 reduction of radiation dose in 2D DSA
- Summary

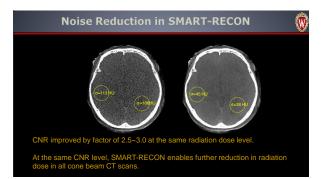






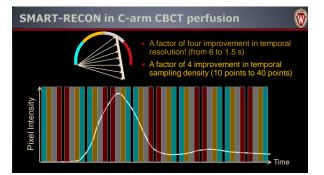






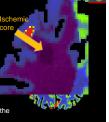
Imaging needed in One-Stop-Shop workflow

- Non-contrast whole brain cone beam CT image to exclude hemorrhage; <
- Time-resolved CBCT angiography to locate occlusion site and perform collateral analysis;
- Whole brain cone-beam CT Perfusion to detect penumbra and infarction core;


Plus:

- Reduced motion artifacts; Reduced radiation dose;
- Reduced beam hardening;

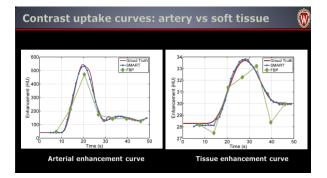
Ŵ


- Technical challenges and technical solution, SMART-RECON, to address the challenges
- SMART-3D: generate 3D DSA and soft tissue images with reduced motion artifacts, beam hardening artifacts and noise level from a single sweep cone-beam CT (CBCT) acquisition
- SMART-4D: generate time-resolved CBCT angiography and whole brain CBCT perfusion maps
- SMART-2D in angio suite: factor of 20 reduction of radiation dose in 2D DSA
- Summary

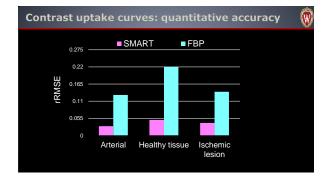
Validation studies with ground truth

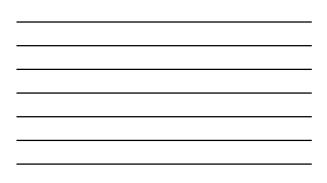
- An anthropomorphic digital perfusion phanto was used
- Perfusion parameters (CBF, CBV, MTT and TTP) we varied for each tissue voxel
- The time attenuation curves (TACs) were simulated the user-specified arterial input function (AIF)
- Low contrast penumbra was introduced to challenge SMART-RECON method
- An ischemic core was introduced to further challenge the SMART-RECON method

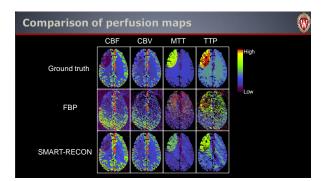
* Manhart et al., IEEE Trans. Med. Imag. 32, 1336 (2013) http://www5.cs.fau.de/research/data/digital-brain-perfusion-phar

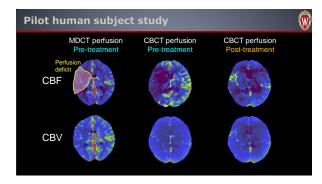


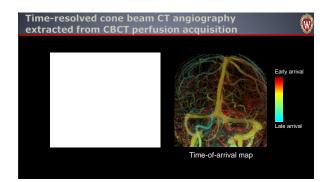
Numerical validation studies: data acquisition


0


C-arm CBCTP acquisition was simulated based on the research CBCTP prototype protocol


- 9 sweeps in total
 5.2 s/sweep
 Pause time: 1.2 s
 Rotation angular range is 260 degree
- Noise was inserted in the projection domain
- Four time frames were reconstructed from each sweep using SMART-RECON




Pilot Clinical Validation Studies

- W
- In collaboration with Drs. Doerfler and Struffert at the University of Erlangen-Nuremberg 19 clinical cases were analyzed by far Only one sample clinical case will be presented here

87 year old female with RICA occlusion

- MDCT perfusion and CTA imaging acquisition were performed for clinical purpose CBCT perfusion acquisition was performed for research purpose right before the revascularization therapy (~4mSv dose) CBCT perfusion acquisition was performed again right after the revascularization therapy (~4mSv dose)

			<u>1 🤍</u>
	Pre-Endovascular Therapy	Post-Endovascular Therapy	Successful
Perfusion deficit			reperfusion
	E VE	es ter	KILSI
essel occlusion			essel open
58	C. C.		44

Imaging needed in One-Stop-Shop workflow

- Non-contrast whole brain cone beam CT image to exclude hemorrhage;
- Time-resolved CBCT angiography to locate occlusion site and perform collateral analysis;
- Whole brain cone-beam CT Perfusion to detect penumbra and infarction core;

Plus:

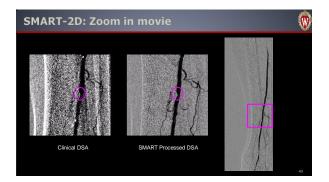
- Reduced motion artifacts;
- Reduced radiation dose; Reduced beam hardening;
-

0

- SMART-2D in anglo suite: factor of 20 reduction of radiation dose in 2D DSA

From SMART-RECON to SMART-Denoise


W


Image reconstruction problem: Objective function=Data fitting term and a regularizer/prior model about the image

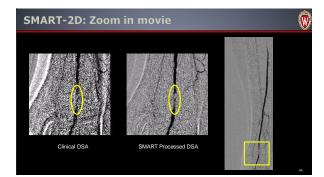
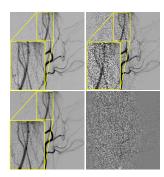
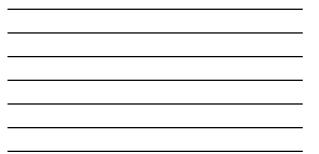
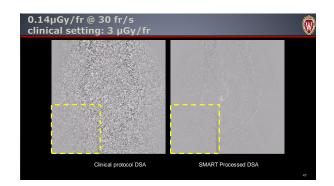
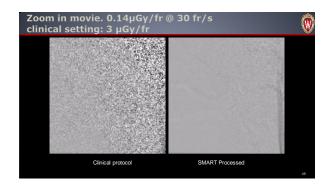

 $\hat{\mathbf{X}} = \arg\min_{\mathbf{X}} \left[\frac{1}{2} \left(\overrightarrow{\mathbf{y}} - \mathbf{A} \overrightarrow{\mathbf{X}} \right)^{\mathrm{T}} \mathbf{D} \left(\overrightarrow{\mathbf{y}} - \mathbf{A} \overrightarrow{\mathbf{X}} \right) + \lambda \| \mathbf{X}_{\mathrm{A}} \|_{*} \right]$

Image denoising problem: Objective function=Image similarity and a regularizer/prior model about the image

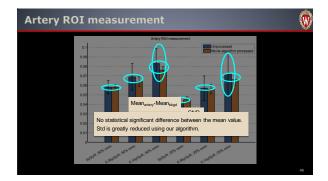

 $\hat{X} = \arg \min_{X} \frac{1}{2} \|X - \hat{X}\|^{2} + \lambda \|X\|_{*}$

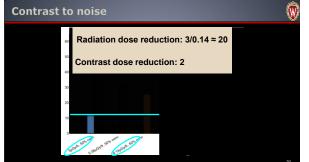


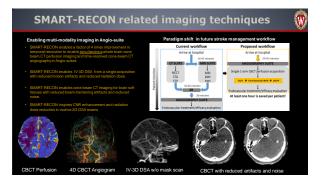




From CNR gain to Canine study to f						on 🤇
 DSA images were obtained using the following dose settings: 3 µGy/frame (<u>clinical setting</u>), 0.36 µGy/frame, 0.14 µGy/frame 50% and 25% contrast concentration injections Frame rate: 30 frame/second Siemens Artis Zee biplane system 						
	Delay (s)	Volume (mi)	Concentration (%)	Flow (ml/s)	Injection time (s)	
50% concentration level	1	6	50	2	3	
25% concentration level	1	8	25	2	4	



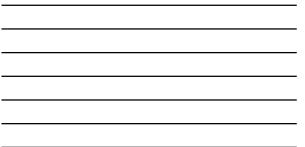


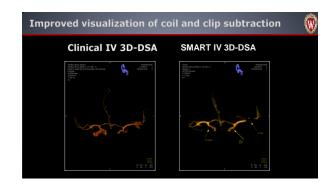


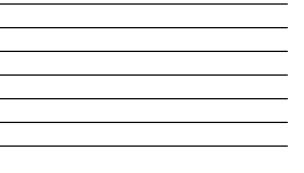
- Technical challenges and technical solution, SMART-RECON, to address the challenges
- SMART-3D: generate 3D DSA and soft tissue images with reduced motion artifacts, beam hardening artifacts and noise level from a single sweep cone-beam CT (CBCT) acquisition
- SMART-4D: generate time-resolved CBCT angiography and whole brain CBCT perfusion maps
- SMART-2D in angio suite: factor of 20 reduction of radiation dose in 2D DSA
- Summary

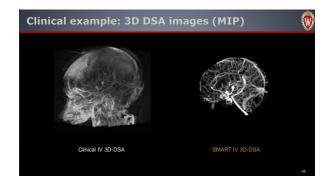
W

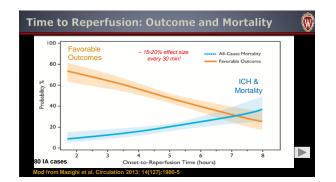
17

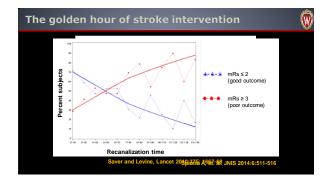



Canine study ROI measurement







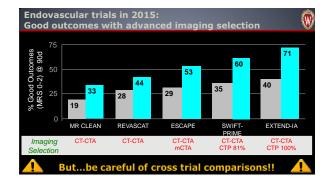


Even with great effort, critical time is lost in stroke protocols which employ multi-modality imaging

Procedure characteristics in EXTEND-IA Trial

- ONSET TO GROIN PUNCTURE N PI

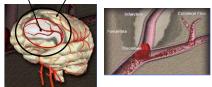
- CT TO GRO

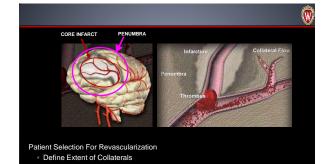

- GROIN PUNCTURE TO TICI 2B/3 OR COMPLETION 43 (24-53)


0

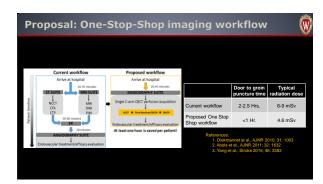
210 (166-251) 93 (71-138)

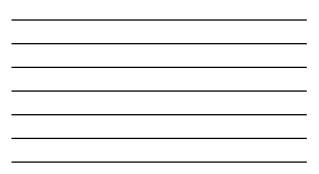
ONSET TO TICI 2B/3 OR COMPLETION 248 (204-277)


Positive IV $ ightarrow$ IA stroke trials in 2015 👘							
Trial	Treatment Timeline	Imaging Selection	Outcome IV Only	Outcome IV + IA			
MR CLEAN N= 500 Berkhemer NEJM 2015	IV TPA by 4.5 hrs Wait for response Start IA by 6 hrs Puncture @ 260 min	CT - ASPECTS 7-10 CTA - Anterior clot CTP - done in 65% - details not reported	MRS 0-2: 19% Recan: 33%	MRS 0-2: 33% Recan: 75%			
ESCAPE N= 316 Goyal NEJM 2015	Symptoms 0-12 hrs IV TPA by 4.5 hrs Puncture @ 185 min CT-reperfusion 84m	CT - ASPECTS 6-10 CTA - Anterior clot mCTA ≥ 50% MCA	MRS 0-2: 29% Recan: 37%	MRS 0-2: 53% Recan: 72%			
EXTEND IA N=70 Campbell NEJM 2015	IV TPA by 4.5 hrs → +/- IA by 6 hours Puncture @ 210 min	CT – IV TPA criteria CTA - Anterior clot CTP - 25% excluded Tmax >6s, rCBF <30%	MRS 0-2: 40% Recan: 34%	MRS 0-2: 71% Recan: 100%			
SWIFT-PRIME N= 196 Saver NEJM 2015	IV TPA by 4.5 hrs → +/- IA Solitaire by 6h Puncture @ 224 min	CT – ASPECTS 7-10 CTA - Anterior Clot CTP - Target MM 84% Exclude malignant13%	MRS 0-2: 35% Recan: N/A	MRS 0-2: 60% Recan: 88%			
REVASCAT N= 206 Jovin NEJM 2015	IV TPA by 4.5 hrs → Wait 30 min; CTA/MRA +/- IA Solitaire by 8h Puncture @ 269 min	CT – ASPECTS 7-10 DWI - ASPECTS ≥ 5 CTA/MRA - Anterior Clot	MRS 0-2: 28% Recan: N/A	MRS 0-2: 44% Recan: 66%			



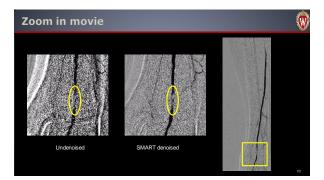
THE ISCHEMIC CORE AND PENUMBRA


CORE INFARCT PENUMBRA



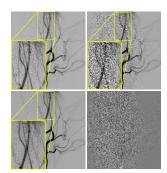
PENUMBRA = A SURROUNDING OR ADJOINING REGION IN WHICH SOMETHING EXISTS IN A LESSER DIGREE (FRINGE)

Determine location and exten

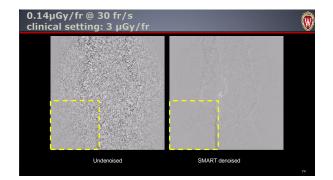


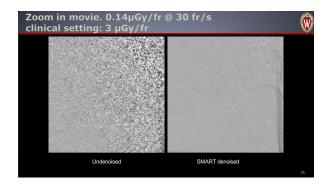
0

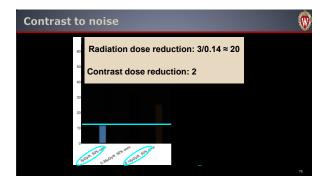
- Clinical background and motivations for one-stop-shop imagi
- Technical challenges and new technical solution: SMART-RECON technology
- SMART-4D in angio suite: Whole brain perfusion and time-reolsoved angiography
- SMART-3D in angio suite: Maskless 3D IV-DSA with reduced motion artifacts, beam hardening artifacts and radiation dose
- SMART-2D in angio suite: factor of 20 reduction of radiation dose in 2D DSA
- Summary

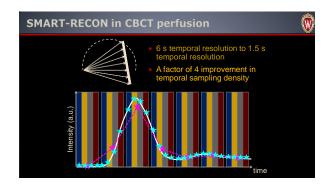


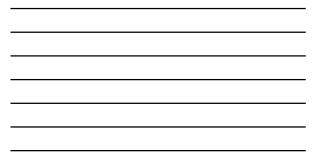
Improved image quality at normal dose means radiation dose reduction potential, but how much?


- DSA images were obtained using the following dose settings:
 3 µGy/frame (clinical setting), 0.36 µGy/frame, 0.14 µGy/frame
- 50% and 25% contrast concentration injections
- Frame rate: 30 frame/second
- Siemens Artis Zee biplane system


	Delay (s)	Volume (ml)	Concentration (%)	Flow (ml/s)	Injection time (s)
50% concentration level	1	6	50	2	3
25% concentration level	1	8	25	2	4


0




Movies

